Publications

  1. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems; Buonvino, S., Di Giuseppe, D., Filippi, J., Martinelli, E., Seliktar, D., Melino, S., Advanced Healthcare Materials, 2024, 13(20):e2400040. doi: 10.1002/adhm.202400040.
  2. Controlled release of vancomycin from PEGylated fibrinogen- polyethylene glycol diacrylate hydrogel; Nguyen, D.V., Wang, L., b, Lim, S.H., Hassanbhai, A.M., Chong, M., Kofidis, T., Tan, E.C.K., Seliktar, D., Kang, L., Rufaihah, A.J., Biomaterials Advances, 2024, 161:213896. doi: 10.1016/j.bioadv.2024.213896.
  3. Development of a controlled local release system for protein therapeutics in the treatment of skeletal muscle injuries and diseases; Lev, R., Bar-Am, O., Guardiola, O., Minchiotti, G., Peled, E., Seliktar, D., Cell, Death and Disease, 2024, 15(7):470. doi: 10.1038/s41419-024-06645-2.
  4. Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats; Jiang, W., Glaeser, J.D., Kaneda, G., Sheyn, J., Wechsler, J.T., Stephan, S.,  Salehi, K., Chan, J.L., Tawackoli, W., Avalos, P., Johnson,  , Castaneda, C., Kanim, L.E.A., Tanasansomboon, T.,  Burda, J., Shelest, O., Simaan-Yameen, H., Perry, T.G., Kropf, M., Cuellar, J.M., Seliktar, D., Bae, H.W., Stone, L.S.,  Sheyn, D., Science Translational Medicine, 15:725.
  5. Modelling the disease: H2S-sensitivity and drug-resistance of triple negative Breast cancer cells can be modulated by embedding in isotropic micro-environment; Buonvino, S., Arciero, I., Martinelli, E.,  Seliktar, D., Melino, S., Materials Today Bio, 23:100862.
  6. Wireless Electromagnetic Neural Stimulation Patch with Anisotropic Guidance; Jensen, B.N., Wang, Y., Le Friec, A., Nabavi, S., Dong, M., Seliktar, D., Chen, M., NPJ Flexible Electronics, 2023, 7, Article number: 34.
  7. Development of a platform of 3D adipogenesis to model, at higher scale, the impact of LY2090314 compound on fibro/adipogenic progenitor adipogenic drift; Reggio, A., De Paolis, F., Bousselmi, S., Cicciarelli, F., Bernardini, S., Rainer, A., Seliktar, D., Testa, S., Cirillo, C., Grumati, P., Cannata, S., Fuoco, C., Gargioli, C., Disease Models & Mechanisms, 2023, 16(6): dmm049915.
  8. Modulus-dependent effects on neurogenic, myogenic, and chondrogenic differentiation of human mesenchymal stem cells in three-dimensional hydrogel cultures; Goldshmid, R., Simaan-Yameen, H., Liaura Ifergan, Claudia Loebel, Jason A. Burdick, Seliktar, D., Journal of Biomedical Materials Research – Part A, 2023, 111(9):1441-1458.
  9. A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering; Fornetti, E., Fuoco, C., Bernardini, S., Giannitelli, S., Rainer, A., Seliktar, D., Magdinier, F., Baldi, J., Biagini, R., Cannata, S., Testa, S., Gargioli, C., Biofabrication, 2023, 15(2).
  10. Biomanufacturing Recombinantly Expressed Cripto-1 Protein in Anchorage-Dependent Mammalian Cells Growing in Suspension Bioreactors within a Three-Dimensional Hydrogel Microcarrier; Lev, R., Bar-Am, O., Lati, Y., Guardiola, O., Minchiotti, G., Seliktar, D., Gels, 2023, 9(3):243.
  11. Methacrylated Fibrinogen Hydrogels for 3D Cell Culture and Tissue Engineering; Simaan-Yameen, H., Bar-Am, O., Seliktar, D., Acta Biomaterialia, 2023, 164:94-110.
  12. In vivo restoration of dystrophin expression in mdx mice using intra-muscular and intra-arterial injections of hydrogel microsphere carriers of exon skipping antisense oligonucleotides; Cohen, S.A., Bar-Am, O., Fuoco, C., Saar, G., Gargioli, C., Seliktar. D., Cell Death & Disease, 2022, 13, 779.
  13. PEG-fibrinogen hydrogel microspheres as a scaffold for therapeutic delivery of immune cells; Cohen, N., Vagima, Y., Mouhadeb, O., Toister, E., Gutman, H., Lazar, S., Artzy-Schnirman, A., Sznitman, J., Ordentlich, A., Yitzhaki, S., Seliktar, D., Mamroud, E., Epstein L.E., Frontiers in Bioengineering & Biotechnology. 2022, 10:905557.
  14. Effects of antibiotic treatment and phagocyte infiltration on development of Pseudomonas aeruginosa biofilm—Insights from the application of a novel PF hydrogel model in vitro and in vivo; Wu, H., Song, L., Yam, J.K.H., Plotkin, M., Wang, H., Rybtke, M., Seliktar, D., Kofidis, T., Høiby, N., Tolker-Nielsen, T., Song, Z., Givskov, M., Frontiers in Cellular and Infection Microbiology, 2022, 12, 1-11.
  15. Comparison of Four Different Preparation Methods for Making Injectable Microgels for Tissue Engineering and Cell Therapy; Hamami, R., Simaan-Yameen, H., Gargioli, C., Seliktar, D., Regenerative Engineering and Translational Medicine, 2022, 1-15.
  16. A Combined Cell and Growth Factor Delivery for the Repair of a Critical Size Tibia Defect using Biodegradable Hydrogel Implants; Cohen, T., Kossover, O., Peled, E., Bick, T., Hasanov, L., Chun, T.T., Cool, S., Lewinson, D., Seliktar, D., Journal of Tissue Engineering and Regenerative Medicine, 2022, 16(4), 380-395.
  17. Three-dimensional bioprinting of engineered tissue flaps with hierarchical vessel networks (VesselNet) for direct host-to-implant perfusion; Szklanny, A.A., Machour, M., Redensky, I., Goldfracht, I., Kaplan, B., Epstein, M., Simaan Yameen, H., Merdler, U., Seliktar, D., Korin, N., Levenberg, S., Advanced Materials, 2021, 33(42):e2102661.
  18. Injectable hydrogel microspheres for sustained gene delivery of Antisense Oligonucleotides to Restore the Expression of Dystrophin Protein in Duchenne Muscular Dystrophy; Cohen, S.A., Simaan-Yameen, H., Fuoco, C., Gargioli, C., Seliktar. D., European polymer Journal, 2022, 166, 111038.
  19. Photo-Polymerization Damage Protection by Hydrogen Sulfide Donors for 3D-Cell Culture Systems Optimization; Buonvino, S., Ciocci, M., Seliktar, D., Melino, S., International Journal of Molecular Sciences, 2021, 22(11):6095.
  20. Tumor extracellular matrix stiffness promptly modulates the phenotype and gene expression of infiltrating T lymphocytes, Chirivì, M., Maiullari, F., Milan, M., Presutti, D., Cordiglieri, C., Crosti, M., Sarnicola, M.L., Soluri, A., Volpi, M., Święszkowski, W., Prati, D., Rizzi, M., Costantini, M., Seliktar, D., Parisi, C., Bearzi, C., Rizzi, R., International Journal of Molecular Sciences, 2021, 22(11):5862.
  21. Injectability of Biosynthetic Hydrogels: Consideration for Minimally Invasive Surgical Procedures and 3D Bioprinting; Birman, T., Seliktar, D., Advanced Functional Materials, 2021, e2100628.
  22. A hydrogel reveals an elusive cancer stem cell; Melino, S., Seliktar, D., Cell Death and Disease, 2021 Apr 20;12(5):415.
  23. Alginate hydrogel beads embedded with drug-bearing polycaprolactone microspheres for sustained release of paclobutrazol; Mun, A., Simaan-Yameen, H., Edelbaum, G., Seliktar, D., Scientific Reports, 2021, 11(1):10877.
  24. Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss restoration; Costantini, M., Testa, T., Fornetti, E., Fuoco, C., Nie, M., Bernardini, S., Rainer, A., Baldi, J., Zoccali, C., Biagini, R., Vitiello, L., Blaauw, B., Święszkowski, W., Garstecki, P., Takeuchi, S., Seliktar, D., Cesareni, G., Cannata, S., Gargioli, C., EMBO Molecular Medicine, 2021, 13(3):e12778.
  25. Growth Factor Delivery for the Repair of a Critical Size Tibia Defect using an Acellular, Biodegradable Hydrogel Implants; Kossover, O., Cohen, N., Lewis, J., Peled, E., Seliktar, D., ACS Biomaterials Science & Engineering, 2020, 6, 1, 100–111.
  26. Photocurable Biopolymers for Coaxial Bioprinting; Costantini, M., Barbetta, A., Swieszkowski, W., Seliktar, D., Gargioli, C., Rainer, A., Methods in Molecular Biology, 2021; 2147:45-54.
  27. Live reporting for hypoxia: Hypoxia sensor–modified mesenchymal stem cells as in vitro reporters; Schmitz, C., Pepelanova, I., Seliktar, D., Potekhina, E., Belousov, V. V., Scheper, T., Lavrentieva, A., Biotechnology and Bioengineering, 2020,117(11):3265-3276. doi: 10.1002/bit.27503.
  28. A Gel-Based Model of Selective Cell Motility: Implications for Cell Sorting, Diagnostics, and Screening; Ivanir, E., Shachaf, Y., Yeheskely-Hayon, D., Mironi-Harpaz, I., Harpaz-Segev, S., Birman, T., Hazanov, L., Minai, L., Yelin, D., Seliktar, D., Advanced Functional Materials, 2020, 30, 1807106.
  29. Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model; Sheyn, D., Ben-David, S., Tawackoli, W.,  Zhou, Z., Salehi, K., Bez, M., De Mel, S., Chan, V., Roth, J.,  Giaconi, J.C., Yameen, H.,  Hazanov, L.,  Seliktar, D., Li, D., Gazit, D., Gazit, Z., Theranostics, 2019; 9(25):7506-7524.
  30. Matrix Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures; Yosef, A., Kossover, O., Mironi-Harpaz, I., Mauretti, A., Melino, S., Mizrahi, J. Seliktar, D., Advanced Healthcare Materials, 2019; 8(13):e1801436.
  31. Cryogenic Scanning Electron Microscopy for Cellular Hydrogels Characterization; Schnabel-Lubovsky, M., Seliktar, D., Talmon, Y., Journal of Tissue Engineering and Regenerative Medicine, 2019; 13(4):587-598.
  32. Tailoring supramolecular guest-host hydrogel viscoelasticity with covalent fibrinogen double networks; Loebel, C., Ayoub, A., Galarraga, J.H., Kossover, O., Simaan-Yameen, H., Seliktar, D., Burdick, J.A., Journal of Materials Chemistry B, 2019; 7(10):1753-1760.
  33. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of Supramolecular Peptide Matrix to Form Composite Hydrogels; Aviv, M., Grigoriants, I., Halperin-Sternfeld, M., Buzhansk, L., Mironi-Harpaz, I., Seliktar, D., Einav, S., Adler-Abramovich, L., ACS Applied Material Interfaces, 2018, 10(49):41883-41891.
  34. The effect of scaffold modulus on the morphology and remodeling of fetal mesenchymal stem cells; Rufaihah, A.J., Cheyyatraivendran, S., Mazlan, M.D.M, Lim, K., Chong, M., Mattar, C.N., Chan, J., Kofidis, T., Seliktar, D., Frontiers in Physiology, 2018, 21;9:1555.
  35. Cyanobacterium Trichormus Variabilis (Nostocles): Low-cost Biomass for Omega3 Production and Exopolymeric-Carrier System; Bellini, E., Ciocci, M., Savio, S., Antonaroli, S., Seliktar, D., Melino, S., Congestria, R., Marine Drugs, 2018, 16(9).
  36. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes; Maiullari, F., Costantini, M., Milan, M., Pace, V., Chirivì, M., Maiullari, S., Baci, D., Marei, H.E., Seliktar, D., Gargioli, C., Bearzi, C., Rizzi, R., Scientific Reports, 2018, 8(1):13532.
  37. Cell encapsulation utilizing PEG-fibrinogen hydrogel supports viability and enhances productivity under stress conditions; Cohen, N., Toister, E., Lati, Y., Girshengorn, M., Levin, L., Silberstein, L., Seliktar, D., Epstein L.E., Cytotechnology, 2018, 70(3):1075-1083.
  38. Hydrogel Biomaterials and Their Therapeutic Potential for Muscle Injuries and Muscular Dystrophies; Lev, R., Seliktar, D., Journal of the Royal Society Interface, 2018, 15(138). pii: 20170380.
  39. Injectable Silk Fibroin Hydrogels Functionalized with Microspheres as an Adult Stem Cell Carrier Systems; Ciocci, M., Cacciotti, I., Seliktar, D., Melino, S., International Journal of Biological Macromolecules, 2018, 108:960-971.
  40. Semi-Synthetic Hydrogel Composition, Micro-Patterning and Material Stiffness to Regulate Sciatic Nerve Regeneration; Berkovitch, Y., Cohen, N., Peled, E. Schmidhammer, R., Florian, H., Teusch, A., Wolbank, S., Yelin, D., Redl, H., Seliktar, D., Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4):1049-1061.
  41. Fibrogenic and Angeiogenic Commitments of hiPS-MSCs in CTGF-Delivering Scaffold in an Immune-deficient Mice Model; Xu, R., Dagnaes-Hansen, F., Taskin, M.B., Wogensen, L., Axelsen, S.M., Seliktar, D., Besenbacher, F., Chen, M., Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018, 106(6):2266-2274.
  42. Hydrogel Modulus Affects Proliferation Rate of Human Mesenchymal Stem Cells Grown in Three-Dimensional Culture; Goldshmid, R., Seliktar, D., ACS Biomaterials Science & Engineering, 2017, 3 (12), 3433–3446.
  43. Combination of biochemical and mechanical cues for tendon tissue engineering; Testa, S. Costantini, M., Fornetti, E., Bernardini, S., Trombetta, M., Seliktar, D., Cannata, S., Rainer, A., Gargioli, C., Journal of Cellular and Molecular Medicine, 2017, 21(11):2711-2719.
  44. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo; Costantini, M., Testa, S., Mozetic, P., Barbetta, A., Fuoco, C., Fornetti, E., Tamiro, F., Bernardini, S., Jaroszewicz, J., Święszkowski, W., Trombetta, M., Castagnoli, L., Seliktar, D., Garstecki, P., Cesareni, G., Cannata, S., Rainer, A., Gargioli, C., Biomaterials, 2017, 131:98-110.
  45. Semi-Synthetic Hydrogel Composition and Stiffness Regulate Neuronal Morphogenesis; Berkovitch, Y., Seliktar, D., International Journal of Pharmaceutics, 2017, 523(2):545-555.
  46. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres; Pradhana, S., Clary, J.M., Seliktar, D., Lipke E.A., Biomaterials, 2017, 115:141-154.
  47. Dual delivery of VEGF and ANG-1 in ischemic hearts using an injectable hydrogel; Rufaihah, A.J., Johari, N.A., Vaibavi, S.R., Plotkin, M., Thien, D.T., Kofidis, T., Seliktar, D., Acta Biomaterialia, 2017, 48:58-67.
  48. Natural myocardial ECM patch drives cardiac progenitor based restoration even after scarring; Sarig, U., Sarig, H., deBerardinis, E., Chaw, S.Y., Nguyen, E.B., Ramanujam, V. S., Thang, V.D., Al-Haddawi, M., Liao, S., Seliktar, D., Kofidis, T., Boey, F.Y., Venkatraman, S.S., Machluf, M., Acta Biomaterialia, 2016, 44:209-20.
  49. Biocompatibility of PEGylated fibrinogen and its effect on healing of full-thickness skin defects: A preliminary study in rats; Venzin, C., Jacot, V., Berdichevsky, A., Karol, A.A., Seliktar, D., von Rechenberg, B., Nuss, K.M.R., Journal of Biotechnology & Biomaterials, 2016, 6:233.
  50. Chemokine axes in breast cancer: factors of the tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors; Weitzenfeld, P., Kossover, O., Körner, C., Meshel, T., Wiemann, S., Seliktar, D., Legler, DF., Ben-Baruch, A., Journal of Leukocyte Biology, 2016, 99(6):1009-25.
  51. Design of a novel composite H2S-releasing hydrogel for cardiac tissue repair; Mauretti, A., Neri A., Kossover, O., Seliktar, D., Nardo, PD, Melino, S., Macromolecular Bioscience, 2016, 16(6):847-58.
  52. Formation of Mature 3D Engineered Cardiac Tissues Through Direct Encapsulation of Human Pluripotent Stem Cells; Kerscher, P., Turnbull, I.C., Hodge, A.J., Kim, J., Seliktar, D., Easley, C.J., Costa, K.D., Lipke, E.A. Biomaterials, 2016, 83:383-95.
  53. Pharmaceutical biotechnology: Expanding horizons for pharmaceutical biotechnology in industry and academia; de la Cueva-Méndez G, Seliktar D., Current Opinions in Biotechnology, 2015, 35:IV-VI.
  54. PEG-Thiol based hydrogels with controllable properties; Yom-Tov, O., Seliktar, D., Bianco-Peled, H., European Polymers Journal, 2016, 74, 1-12.
  55. Hydrogels for Cardiovascular Therapeutic Angiogenesis; Rufaihah, A.J., and Seliktar, D., Advanced Drug Delivery Reviews, 2016, 96:31-9.
  56. Advanced Cellular Screening System for Nanoparticle Safety Testing; Sambale, F., Stahl, F., Rüdinger, F., Seliktar, D., Kasper, C., Bahnemann, D.W., Scheper, T., Journal of Nanomaterials, 2015, Article ID 691069, 16 pages.
  57. Photo-patterning PEG-based Hydrogels for Neuronal Engineering; Berkovitch, Y., Yelin, D., Seliktar, D., European Polymers Journal, 2015, 72, 473-483.
  58. Steric Inhibition of Adhesion and Invasion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair; Goldshmid, R., Cohen, S., Shachaf, Y., Kupershmit, I., Sarig-Nadir, O., Seliktar, D., Wechsler, R., Scientific Report, 2015, 5:12607.
  59. A Method for Preparation of Hydrogel Microcarriers for Stem Cell Expansion and Bioprocessing; Goldshmid, R., Mironi-Harpaz, I., Seliktar, D., Methods, 2015, 84:35-43.
  60. A Modified Emulsion Gelation Technique to Improve Buoyancy of Hydrogel Tablets for Floating Drug Delivery Systems; Yom-Tov, O., Seliktar, D., Bianco-Peled, H., Materials Science and Engineering C, 55, 335-342, 2015.
  61. Using Bimodal MRI/Fluorescence Imaging to Identify Host Angiogenic Response to Implant Geometry; Berdichevski, A., Yameen, H.S., Dafni, H., Neeman, M., Seliktar, D., Proceedings of the National Academy of Sciences, 112(16):5147-52, 2015.
  62. Differentiation of dental pulp stem cells in 3-D biosynthetic hydrogel system; Qiqi, L., Mirali, P., Rufaihah, A.J., Vinicius, R., Huei, J.T., Seliktar, D., Wei, S.T., Stem Cell International, Vol. 2015, ID: 525367, 9 pages.
  63. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold; Xu, R., Taskin, M.B., Rubert, M., Seliktar, D., Besenbacher, F., Chen, M., Scientific Reports, 5:8480, 2015.
  64. The effect of matrix stiffness on nucleus pulposus stem cells; Navaro, Y., Bleich-Kimelman, N., Hazanov, L., Mironi-Harpaz, I., Shachaf, Y., Garty, S., smith, Y., Pelled, G., Gazit, Z., Seliktar, D., Gazit, D., Biomaterials, 49:68-76, 2015.
  65. Modulation of Huh 7.5 Spheroid Formation and Functionality using Modified PEG-based Hydrogels of Different Stiffness; Lee, B.H., Kim, M.H., Lee, J.H., Seliktar, D., Cho, N.J., Tan, L.P., PLOS ONE, 10(2):e0118123, 2015.
  66. In-Situ Architectures Designed in 3D Cell-Laden Hydrogels using Microscopic Laser Photolithography; Mironi-Harpaz, I., Hazanov, L., Engel, G., Yelin, D., Seliktar, D., Advanced Materials, 27(11):1933-8, 2015.
  67. In Vivo Generation of a Supernumerary Functional Skeletal Muscle; Fuoco, C., Biondo, A., Longa, E., Mascaro, A., Shapira-Schweitzer, K., Benedetti, S., Salvatori, M.L., Sabrina, S., Bernardini, S., Stefano, C., Roberto, B., Seliktar, D., Cossu, G., Gargioli, C., EMBO Molecular Medicine, 7(4):411-22, 2015.
  68. Protein Composition Alters In Vivo Resorption Properties of Semi-Synthetic PEG-based Hydrogels as Monitored by Contrast-Enhanced MRI; Berdichevski, A., Shachaf, Y., Wechsler, R., Seliktar, D., Biomaterials, 42:1-10, 2015.
  69. Injectable PEGylated Fibrinogen Cell-Laden Microparticles Made with a Continuous Solvent- and Oil-Free Preparation Method; Oliveira, M.B., Kossover, O., Mano, J.F., Seliktar, D., Acta Biomaterialia, 13:78-87, 2015.
  70. pH Stimulated DNA Hydrogels Exhibiting Shape Memory Properties; Guo, W.W., Lu, C.H., Orbach, R., Wang, F., Qi, X.J., Cecconello, A., Seliktar, D., Willner, I., Advanced Materials, 27(1):73-8, 2015.
  71. Fibrin-based Hydrogel Scaffold for Controlling Cell-Matrix Interaction in Vascular Tissue Engineering; Mironi-Harpaz, I., Zigerson, S., Seliktar, D., Advanced Biomaterials and Devices in Medicine, 1(1): 28-37, 2014.
  72. Cellularized Biosynthetic Microhydrogel Polymers for Intravascular Liver Tissue Regeneration Therapy; Saadi, T., Nayshool, N., Carmel, J., Arish, A., Bramnik, Z., Mironi-Harpaz, I., Seliktar, D., Baruch, Y., Tissue Engineering A, 20(21-22):2850-9, 2014.
  73. A Novel Design of Injectable Porous Hydrogels with in situ Pore Formation; Yom-Tov, O., Neufeld, L., Seliktar, D., Bianco-Peled, H., Acta Biomaterialia, 10(10):4236-46, 2014.
  74. Bioinspired Functional Nanostructures Based on DOPA-DOPA Peptide Motif; Fichman, G., Adler-Abramovich, L., Manohar, S., Mironi-Harpaz, I., Guterman, T., Seliktar, D., Messersmith, P.B., Gazit, E., ACS Nano, 8(7):7220-8, 2014.
  75. 3D Hydrogel Environment Rejuvenates Aged Pericytes for Skeletal Muscle Tissue Engineering; Fuoco, C., Sangalli, E., Vono, R., Testa, S., Sacchetti, B., Latronico, M.V.G., Bernardini, S., Madeddu, P., Cesareni, G., Seliktar, D., Rizzi, R., Bearzi, C., Cannata, S.M., Spinetti, G., and Gargioli, C., Frontiers in Physiology, 5:203, 2014.
  76. Reversible Ag+ Crosslinked DNA Hydrogels; Guo, W.W., Qi, X.J., Orbach, R., Lu, C.H., Freage, L., Mironi-Harpaz, I., Seliktar, D., Yang, H.H., Willner, I., Chemical Communications, 50(31):4065-8, 2014.
  77. Cell Morphology in Injectable Nanostructured Biosynthetic Hydrogels; Yom-Tov, O., Seliktar, D., Bianco-Peled, H., Journal of Biomedical Materials Research A, 102(12):4371-9, 2014.
  78. PlGF–MMP9-engineered cardiomyocyte-derived iPS cells supported by PEG–fibrinogen hydrogel possess an enhanced capacity to repair the damaged myocardium; Bearzi, C., Gargioli, C., Baci, D., Fortunato, O., Shapira-Schweitzer, K., Kossover, O., Latronico, M.L., Seliktar, D., Condorelli, G., Rizzi, R., Cell Death and Disease, 5:e1053, 2014.
  79. A novel method for hydrogel nanostructuring; Yom-Tov, O., Frisman, I., Seliktar, D., Bianco-Peled, H., European Polymer Journal, 52:137-45, 2014.
  80. Influence of soluble PEG-OH incorporation in a 3-D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth; Lee, B.H., Tin, SP., Chaw, SY., Cao, Y., Xia, Y., Steele, TW., Seliktar, D., Bianco-Peled, H., Venkatraman, S.S., Journal of Biomaterials Science, Polymer Edition, 25(4):394-409, 2014.
  81. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack; Plotkin, M., Vaibavi, S.R., Rufaihah, A.J., Venkateswaran, N., Wang, J., Shachaf, Y., Kofidis, T., Seliktar, D., Biomaterials, 35(5):1429-38, 2014.
  82. Bioprinting and Tissue Engineering: Recent Advances and Future Perspectives; Seliktar, D., Dikovsky D., Napadensky E., Israeli Journal of Chemistry, 53 (9-10):795-804, 2013.
  83. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model; Rufaihah, A.J., Vaibavi, S.R., Plotkin, M., Jiayi, S., Nithya, V., Wang, J., Seliktar, D., Kofidis, T., Biomaterials, 34(33):8195-202, 2013.
  84. Attempted application of bioengineered/biosynthetic supporting matrices with phosphatidylinositol-trisphosphate-enhancing substances to organ culture of human primordial follicles; Lerer-Serfaty, G., Samara, N., Fisch, B., Shachar, M., Kossover, O., Seliktar, D., Ben-Haroush, A., Abir, R., Journal of Assisted Reproduction and Genetics, 30(10):1279-88, 2013.
  85. Time-Dependent Matrix Modulus and Cellular Response in Three-Dimensional Hydrogel Cultures; Kesselman, D., Kossover, O., Mironi-Harpaz, I., Seliktar, D. Acta Biomaterialia, 9(8):7630-39, 2013.
  86. Fluorescent DNA Hydrogels Composed of Nucleic Acid-Stabilized Silver Nanoclusters; Guo, W.W., Orbach, R., Mironi-Harpaz, I., Seliktar, D., Willner, I., Small, 9(22):3748-52, 2013.
  87. Switchable Catalytic Acrylamide Hydrogels Crosslinked by Hemin/G-Quadruplexes; Lu, C.H., Qi, X.J., Orbach, R., Yang, H.H., Mironi-Harpaz, I., Seliktar, D., Willner, I., Nano Letters, 13(3):1298-302, 2013.
  88. Capillary morphologenesis in PEG-collagen hydrogels; Singh, R.K., Seliktar, D., Putnam, A.J., Biomaterials, 34(37):9331-40, 2013.
  89. Low-Dose BMP-2 Treatment for Bone Repair using a PEGylated Fibrinogen Hydrogel; Ben-David, D., Srouji, S., Shapira-Schweitzer, K., Kossover, O., Ivanir, E., Kuhn, G., Muller, R., Seliktar, D., Livne, E., Biomaterials, 34(12):2902-10, 2013.
  90. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration; Fuoco, C., Salvatori, M.L., Biondo, A., Shapira-Schweitzer, K., Santoleri, S., Antonini, S., Bernardini, S., Tededsco, F.S., Cannata, S., Seliktar, D., Cossu, G., and Gargioli, C., Skeletal Muscle, 2(1):24, 2012.
  91. Designing Cell-Compatible Hydrogels for Biomedical Applications; Seliktar D., Science, 336(6085):1124-8, 2012.
  92. The rheological and structural Properties of Fmoc-peptide-based hydrogels: The effect of aromatic molecular architecture on self-assembly and physical characteristics; Orbach, R., Mironi-Harpaz, I., Adler-Abramovich, L., Mossou, E., Forsyth, V.T., Gazit, E., Seliktar, D., Langmuir, 28(4):2015-22, 2012.
  93. Photopolymerization of Cell-Encapsulating Hydrogels: Crosslinking Efficiency Versus Cytotoxicity; Mironi-Harpaz, I., Wang, D.Y., Venkatraman, S., Seliktar, D. Acta Biomaterialia, 8(5):1838-48, 2012.
  94. Nanostructuring Biosynthetic Hydrogels for Tissue Engineering: A Cellular and Structural Analysis; Frisman, I., Seliktar, D., Bianco-Peled, H., Acta Biomaterialia, 8(1):51-60, 2012.
  95. Regenerative medicine as applied to general surgery; Orlando, G., Wood, J.K., Baptista, P., Binder, K.W., Bitar, K.N., Breuer, C., Burnett, L., Christ, G., DeCoppi, P., Farney, A., Figliuzzi, M., Holmes, J., Koch, K., Macchiarini, P., Sani1, S.H.M., Opara1, E., Remuzzi, A., Rogers, J., Saul, J., Seliktar, D., Shapira-Schweitzer, K., Smith, T., Solomon, D., Van Dyke, M., Yoo, J., Zhan, Y., Atala, A., Stratta, R.J., Soker, S. Annals of Surgery, 255(5):867-80, 2012.
  96. Regenerative medicine as applied to solid organ transplantation: current status and future challenges; Orlando, G., Baptista, P., Birchall, M., De Coppi, P., Farney, A., Guimaraes-Souza, N.K., Opara, E., Rogers, J., Seliktar, D., Shapira-Schweitzer, K., Stratta, R.J., Atala, A., Wood, K.J., and Soker, S., Transplantation International, 24(3):223-32, 2011.
  97. Nanostructuring PEG-Fibrinogen Hydrogels to Control Cellular Morphogenesis; Frisman, I., Seliktar, D., Bianco-Peled, H., Biomaterials, 32(31):7839-46, 2011.
  98. A Combined Cell Therapy and In Situ Tissue Engineering Approach for Myocardial Repair; *Habib, M., *Shapira-Schweitzer, K., Caspi, O., Gepstein, A., Arbel, G., Aronson, D., Seliktar, D., Gepstein, L., Biomaterials, 32(30):7514-23, 2011. (*equal contribution)
  99. Biological and Mechanical Implications of PEGylating Proteins into Hydrogel Biomaterials; Gonen-Wadmany, M., Goldshmid, R., Seliktar, D., Biomaterials, 32(26):6025-33, 2011.
  100. Stimulus-Responsive hydrogels made from Biosynthetic Fibrinogen Conjugates for Tissue Engineering: Structural Characterization; *Frisman, I., *Shachaf, Y., Seliktar, D., Bianco-Peled, H., Langmuir, 27(11):6977-86, 2011. (*equal contribution)
  101. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold system on the phenotype of chondrocytes; Appelman, T., Mizrahi, J., Elisseeff, J., Seliktar, D., Biomaterials, 32(6):1508-16, 2011.
  102. A Finite Element Model of Cell-Matrix Interactions to Study the Differential Effect of Scaffold Composition on Chondrogenic Response to Mechanical Stimulation; Appelman, T., Mizrahi, J., Seliktar, D., Journal of Biomechanical Engineering, 133(4), 2011.
  103. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering; Coburn, J., Gibson, M., Bandalini, P.A., Laird, C., Mao, H.Q., Moroni, L., Seliktar, D., Elisseeff, J. Smart Structures and Systems, 7(3): 213-22, 2011.
  104. Polymer-Conjugated Albumin and Fibrinogen Composite Hydrogels as Cell Scaffolds designed with Affinity-Based Drug Delivery; Oss-Ronen, L., Seliktar, D., Acta Biomaterialia, 7(1):163-70, 2011.
  105. The effect of Ex vivo Dynamic Loading Enhances the Osteogenic Differentiation of  Genetically Engineered Mesenchymal Stem Cells model; Kimelman-Bleich, N., Kallai, I., Seliktar, D., Helm, G.A., Gazit, Z., Gazit, D., Pelled, G., Journal of Tissue Engineering and Regenerative Medicine, 5(5):384-93, 2011.
  106. The Role of Matrix Metalloproteinases in Regulating Neuronal and Nonneuronal Cell Invasion into PEGylated Fibrinogen Hydrogels; Sarig-Nadir, O., Seliktar, D., Biomaterials, 31(25):6411-16, 2010.
  107. Proteolytically Degradable Photo-Polymerized hydrogels made of PEG-Fibrinogen Adducts; Dikovsky, D., Bianco-Peled, H., and Seliktar, D., Advanced Engineering Materials, 12(6):B200-B209, 2010.
  108. The biocompatibility of PluronicF127 fibrinogen-based hydrogels; Shachaf, Y., Gonen-Wadmany, M., Seliktar, D., Biomaterials, 31(10):2836-47, 2010.
  109. Photopolymerizable Hydrogels Made from Polymer-Conjugated Albumin for Affinity-Based Drug Delivery; Oss-Ronen, L., Seliktar, D., Advanced Engineering Materials, 12(1-2):B45-B52, 2010.
  110. Structural investigation of PEG-fibrinogen conjugates; Frisman, I., Seliktar, D., Bianco-Peled, H., Journal of Materials Science: Materials in Medicine, 21(1): 73-80, 2010.
  111. Structural investigation of PEG-Fibrinogen conjugates; Frisman, I., Seliktar, D., Bianco-Peled, H., Acta Biomaterialia, 6(7):2518-24, 2010.
  112. In Vitro Evaluation of a Composite Scaffold Made from Electrospun Nanofibers and a Hydrogel for Vascular Tissue Engineering; Feingold, D., Zussman, E., Seliktar, D., Journal of Bionanoscience, 3:45-57, 2009.
  113. Self-Assembled Fmoc-Peptides as a Platform for the Formation of Nanostructures and Hydrogels; Orbach, R., Adler-Abramovich, L., Zigerson, S., Mironi-Harpaz, I., Seliktar, D., Gazit, E., Biomacromolecules, 10(9):2646-51, 2009.
  114. Microscale Control of Stiffness in Cell-Adhesive Substrate Using Microfluidics-Based Lithography; Cheung, Y.K., Azeloglu, E.U., Costa, K.D., Seliktar, D., Sia, S.K., Angewandte Chemie, 48(39):7188-92, 2009.
  115. Laser photoablation of Guidance Microchannels into Hydrogels Directs Cell Growth in 3-D; Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S., Seliktar, D., Biophysical Journal, 3;96(11):4743-52, 2009.
  116. Phloroglucinol-based Biomemtic adhesives for medical applications; Bitton, R., Josef, E., Shimshelashvili, I., Shapira-Schweitzer, K., Seliktar, D., Bianco-Peled, H., Acta Biomaterialia, 5(5):1582-7, 2009.
  117. Real-Time monitoring of force response measured in mechanically stimulated Tissue Engineered Cartilage; Preiss-Bloom, O., Mizrahi, J., Elisseeff, J., Seliktar, D., Artificial Organs, 33(4):318-27, 2009.
  118. The differential effect of scaffold composition and architecture on chondrocytes response to mechanical stimulation; Appelman, T., Mizrahi, J., Elisseeff, J., Seliktar, D., Biomaterials, 30(4): 518-25, 2009.
  119. A photopolymerizable Hydrogel for 3-D Culture of Human Embryonic Stem Cell-Derived Cardiomyocytes and Rat Neonatal Cardiac Cells; Shapira-Schweitzer, K., Habib, M., Gepstein, L., Seliktar, D., Journal of Molecular and Cellular Cardiology, 46(2):213-24, 2009.
  120. Hydrogels for Cardiac Tissue Regeneration; Shapira-Schweitzer, K., Dikovsky, D., Habib, M., Gepstein, L., Seliktar, D., Bio-Medical Materials and Engineering, 18(4-5):309-14, 2008.
  121. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system; Peyton, S.R., Kim, P.D., Ghajar, C.M., Seliktar, D., Putnam, A.J., Biomaterials, 29(17):2597-607, 2008.
  122. Defining the Role of Matrix Compliance and Proteolysis in Three-Dimensional Cell Spreading and Remodeling; Dikovsky, D., Bianco-Peled, H., and Seliktar, D., Biophysical Journal, 94(7):2914-25, 2008.
  123. Compositional Alterations of Fibrin-Based Materials for Regulating In Vitro Neural Outgrowth; Sarig-Nadir, O., Seliktar, D., Tissue Engineering Part A, 14(3):401-11, 2008.
  124. Differential Response of Adult and Embryonic Mesenchymal Progenitor Cells to Mechanical Compression in Hydrogels; Terraciano, V., Hwang, N., Moroni, L., Park, H.B., Zhang, Z., Mizrahi, J., Seliktar, D., Elisseeff, J., Stem Cell, 25(11):2730-38, 2007.
  125. Ultrasound-Induced Angiogenic Response in Endothelial Cells; Mizrahi, N., Seliktar, D., Kimmel, E., Ultrasound in Medicine and Biology, 33(11):1818-29, 2007.
  126. Protein-Polymer Conjugates for Forming Photopolymerizable Biomimetic Hydrogels for Tissue Engineering; Gonen-Wadmany, M., Oss-Ronen, L., Seliktar, D., Biomaterials, 28(26):3876-86, 2007.
  127. Matrix Stiffness Affects Spontaneous Contraction of Cardiomyocytes Cultured within a PEGylated Fibrinogen Biomaterial; Shapira, K., and Seliktar, D., Acta Biomaterialia, 3(1):33-41, 2007.
  128. A Novel Poly(ethylene glycol)-Fibrinogen Hydrogel for Tibial Segmental Defect Repair in a Rat Model; Peled, E., Boss, J., H., Zinman, C., Bejar, J., Seliktar, D., Journal of Biomedical Materials Research A, 80A(4):874-84, 2007.
  129. Immobilized Fibrinogen in PEG Hydrogels does not Improve Chondrocyte-Mediated Matrix Deposition in Response to Mechanical Stimulation; Schmidt, O., Mizrahi, J., Elisseeff, J., Seliktar, D. Biotechnology and Bioengineering, 95(6):1061-9, 2006.
  130. The effect of Structural Alterations of PEG-Fibrinogen Hydrogel Scaffold on 3-D Cellular Morphology and Cellular Migration; Dikovsky, D., Bianco-Peled, H., Seliktar, D., Biomaterials, 27(8):1496-506, 2006.
  131. Endoluminal Hydrogel Films Made of Alginate and Polyethylene Glycol: Physical Characteristics and Drug-Eluting Properties; Livnat, M., Beyar, R., and Seliktar, D., Journal of Biomedical Materials Research A, 75A:710-22, 2005.
  132. Extracellular Stimulation in Tissue Engineering; Seliktar, D., Annals of the New York Academy of Sciences 1047:386-94, 2005.
  133. In Vivo Degradation of Semi-Rigid Polymeric Films Made of Alginate and Polyethylene Glycol; Livnat, M., Peled, E., Boss, J., and Seliktar, D., Israeli Journal of Chemistry, 45, 421-27, 2005.
  134. Bio-Synthetic Hydrogel Scaffolds made from Fibrinogen and Polyethylene Glycol for 3-D Cell Cultures; Almany, L., Seliktar, D., Biomaterials, May, 26(15):2467-77, 2005.
  135. Controlling the Cellular Organization of Tissue Engineered Cardiac Constructs; Gonen-Wadmany, M., Gepstein, L., Seliktar, D., Annals of the New York Academy of Sciences, 1015:299-311, 2004.
  136. MMP-2 sensitive, VEGF-bearing Bioactive Hydrogels for Promotion of Vascular Healing; Seliktar, D., Zisch, A., Lutolf, M., Wrana, J.L., Hubbell, J.A., Journal of Biomedical Materials Research A, 68A(4):704-16, 2004.
  137. Mechanical Strain-Stimulated Remodeling of Tissue-Engineered Blood Vessel Constructs; Seliktar, D., Nerem, R.M., Galis, Z.G. Tissue Engineering, 9(4):657-66, 2003.
  138. The Response of Endothelial Cells to Fluid Shear Stress Using a Co-Culture Model of the Arterial Wall; Imberti, B., Seliktar, D., Remuzzi, A., Nerem, R.M., Endothelium, 9(1):1-10, 2002.
  139. The Role of Matrix Metaloproteinase-2 in the Remodeling of Cell-Seeded Vascular Constructs Subjected to Cyclic Strain; Seliktar, D., Nerem, R.M., Galis, Z.G., Annals of Biomedical Engineering, 29(12):1-12, 2001.
  140. Vascular Tissue Engineering; Nerem, R.M. and D. Seliktar, Annual Reviews of Biomedical Engineering, 3:225-243, 2001.
  141. Dynamic Mechanical Conditioning of Collagen Gel Blood Vessel Constructs Induces Remodeling In Vitro; Seliktar, D., Black, R.A., Vito, R.P., and Nerem, R.M., Annals of Biomedical Engineering, 28(4): 351-62, 2000.